Produkt zum Begriff Data Analytics:
-
Data Analytics for IT Networks: Developing Innovative Use Cases
Use data analytics to drive innovation and value throughout your network infrastructureNetwork and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources.After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance.Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use casesExplore and access network data sources, and choose the right data for your problemInnovate more successfully by understanding mental models and cognitive biasesWalk through common analytics use cases from many industries, and adapt them to your environmentUncover new data science use cases for optimizing large networksMaster proven algorithms, models, and methodologies for solving network problemsAdapt use cases built with traditional statistical methodsUse data science to improve network infrastructure analysisAnalyze control and data planes with greater sophisticationFully leverage your existing Cisco tools to collect, analyze, and visualize data
Preis: 43.86 € | Versand*: 0 € -
Getting Started with Data Science: Making Sense of Data with Analytics
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy!Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now.Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories.Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing.You’ll master data science by answering fascinating questions, such as:• Are religious individuals more or less likely to have extramarital affairs?• Do attractive professors get better teaching evaluations?• Does the higher price of cigarettes deter smoking?• What determines housing prices more: lot size or the number of bedrooms?• How do teenagers and older people differ in the way they use social media?• Who is more likely to use online dating services?• Why do some purchase iPhones and others Blackberry devices?• Does the presence of children influence a family’s spending on alcohol?For each problem, you’ll walk through defining your question and the answers you’ll need; exploring howothers have approached similar challenges; selecting your data and methods; generating your statistics;organizing your report; and telling your story. Throughout, the focus is squarely on what matters most:transforming data into insights that are clear, accurate, and can be acted upon.
Preis: 18.18 € | Versand*: 0 € -
Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Preis: 37.44 € | Versand*: 0 € -
Visual Analytics Fundamentals: Creating Compelling Data Narratives with Tableau
Master the Fundamentals of Modern Visual Analytics--and Craft Compelling Visual Narratives in Tableau! Do you need to persuade or inform people? Do you have data? Then you need to master visual analytics and visual storytelling. Today, the #1 tool for telling visual stories with data is Tableau, and demand for Tableau skills is soaring. In Visual Analytics Fundamentals, renowned visual storyteller and analytics professor Lindy Ryan introduces all the fundamental visual analytics knowledge, cognitive and perceptual concepts, and hands-on Tableau techniques you'll need. Ryan puts core analytics and visual concepts upfront, so you'll always know exactly what you're trying to accomplish and can apply this knowledge with any tool. Building on this foundation, she presents classroom-proven guided exercises for translating ideas into reality with Tableau 2022. You'll learn how to organize data and structure analysis with stories in mind, embrace exploration and visual discovery, and articulate your findings with rich data, well-curated visualizations, and skillfully crafted narrative frameworks. Ryan's insider tips take you far beyond the basics--and you'll rely on her expert checklists for years to come. Communicate more powerfully by applying scientific knowledge of the human brain Get started with the Tableau platform and Tableau Desktop 2022 Connect data and quickly prepare it for analysis Ask questions that help you keep data firmly in context Choose the right charts, graphs, and maps for each project--and avoid the wrong ones Craft storyboards that reflect your message and audience Direct attention to what matters most Build data dashboards that guide people towards meaningful outcomes Master advanced visualizations, including timelines, Likert scales, and lollipop charts This book has only one prerequisite: your desire to communicate insights from data in ways that are memorable and actionable. It's for executives and professionals sharing important results, students writing reports or presentations, teachers cultivating data literacy, journalists making sense of complex trends. . . . practically everyone! Don't even have Tableau? Download your free trial of Tableau Desktop and let's get started!
Preis: 38.51 € | Versand*: 0 €
-
Wie funktioniert Big Data Analytics?
Wie funktioniert Big Data Analytics? Big Data Analytics beinhaltet die Verarbeitung und Analyse großer Mengen von Daten, um Muster, Trends und Erkenntnisse zu identifizieren. Zunächst werden die Daten gesammelt und gespeichert, dann werden sie mithilfe von speziellen Tools und Algorithmen analysiert. Durch den Einsatz von Data Mining, maschinellem Lernen und künstlicher Intelligenz können Unternehmen wertvolle Einblicke gewinnen und fundierte Entscheidungen treffen. Die Ergebnisse der Analyse können für verschiedene Anwendungen genutzt werden, wie z.B. zur Verbesserung von Produkten und Dienstleistungen, zur Optimierung von Geschäftsprozessen oder zur Vorhersage von zukünftigen Entwicklungen.
-
Wie können Big Data Analytics-Technologien im Projektmanagement eingesetzt werden?
Big Data Analytics-Technologien können im Projektmanagement eingesetzt werden, um große Mengen an Daten aus verschiedenen Quellen zu sammeln und zu analysieren. Dies ermöglicht es Projektmanagern, Trends und Muster zu erkennen, Risiken frühzeitig zu identifizieren und fundierte Entscheidungen zu treffen. Darüber hinaus können Big Data Analytics-Technologien auch zur Vorhersage von Projektverzögerungen oder zur Optimierung von Ressourcen eingesetzt werden.
-
Was ist Software Data Becker?
Software Data Becker war ein deutsches Softwareunternehmen, das in den 1980er und 1990er Jahren bekannt war. Es entwickelte und vertrieb verschiedene Softwareprodukte für den PC, darunter Büroanwendungen, Grafikprogramme und Spiele. Das Unternehmen wurde 2014 geschlossen.
-
Was bedeuten Data Science und Data Engineering?
Data Science bezieht sich auf die Analyse und Interpretation von Daten, um Erkenntnisse und Muster zu gewinnen, die bei der Lösung von Problemen und der Unterstützung von Entscheidungsprozessen helfen. Data Engineering hingegen bezieht sich auf die Entwicklung und Verwaltung von Dateninfrastrukturen, um sicherzustellen, dass Daten effizient erfasst, gespeichert, verarbeitet und analysiert werden können. Data Engineering legt den Fokus auf die technische Seite der Datenverarbeitung, während Data Science sich auf die Analyse und Interpretation der Daten konzentriert.
Ähnliche Suchbegriffe für Data Analytics:
-
Business Intelligence, Analytics, Data Science, and AI, Global Edition
Business Intelligence, Analytics, Data Science, and AI is your guide to the business-related impact of artificial intelligence, data science and analytics, designed to prepare you for a managerial role. The text's vignettes and cases feature modern companies and non-profit organizations and illustrate capabilities, costs and justifications of BI across various business units. With coverage of many data science/AI applications, you'll explore tools, then learn from various organizations' experiences employing such applications. Ample hands-on practice is provided, can be completed with a range of software, and will help you use analytics as a future manager. The 5th Edition integrates the fully updated content of Analytics, Data Science, and Artificial Intelligence, 11/e and Business Intelligence, Analytics, and Data Science, 4/e into one textbook, strengthened by 4 new chapters that will equip you for today's analytics and AI tech, such as ChatGPT. Examples explore analytics in sports, gaming, agriculture and data for good.
Preis: 81.32 € | Versand*: 0 € -
Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights
Use Product Analytics to Understand and Change Consumer Behavior at ScaleProduct Analytics is a complete, hands-on guide to generating actionable business insights from customer data. Experienced data scientist and enterprise manager Joanne Rodrigues introduces practical statistical techniques for determining why things happen and how to change, at scale, what people do. She complements these with powerful social science techniques for creating better theories, designing better metrics, and driving more rapid and sustained behavior change.This book fills the gaps that many other data science book leave behind: how to start a new data science project; how to conceptualize complex ideas; building metrics from the statistic and demographic fundamentals; projecting consumer populations and material needs for a business; and causal inference beyond simple A/B testing techniques, such as difference-in-difference, regression discontinuity, propensity score matching, and uplift modelling.Writing for entrepreneurs, product managers, marketers, and other business analytics professionals, Rodrigues teaches through intuitive examples from both web and offline environments. Avoiding math-heavy explanations, she guides you step by step through choosing the right techniques and algorithms for each application, running analyses in the R programming language, and getting answers you can trust.Whatever your product or service, this guide can help you create precision-targeted marketing campaigns, improve consumer satisfaction and engagement, and grow revenue and profits.Develop core metrics and effective KPIs for user analytics in any web productTruly understand statistical inference, and the differences between correlation and causationBuild intuitive predictive models to capture user behavior in productsTease out causal effects from observational data using modern, quasi-experimental designs and statistical matchingImprove response through uplift modeling and other sophisticated targeting methodsProject business costs and product population changes via advanced demographic techniquesRegister your book for convenient access to downloads, updates, and/or corrections as they become available. See inside the book for details.
Preis: 37.44 € | Versand*: 0 € -
Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data
The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.
Preis: 29.95 € | Versand*: 0 € -
Data Analytics for IT Networks: Developing Innovative Use Cases
Use data analytics to drive innovation and value throughout your network infrastructureNetwork and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources.After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance.Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use casesExplore and access network data sources, and choose the right data for your problemInnovate more successfully by understanding mental models and cognitive biasesWalk through common analytics use cases from many industries, and adapt them to your environmentUncover new data science use cases for optimizing large networksMaster proven algorithms, models, and methodologies for solving network problemsAdapt use cases built with traditional statistical methodsUse data science to improve network infrastructure analysisAnalyze control and data planes with greater sophisticationFully leverage your existing Cisco tools to collect, analyze, and visualize data
Preis: 43.86 € | Versand*: 0 €
-
Ist Big Data eine Technologie?
Ist Big Data eine Technologie? Big Data ist eigentlich kein spezifisches Technologieprodukt, sondern vielmehr ein Konzept oder eine Herangehensweise, um große Mengen an Daten zu sammeln, zu speichern, zu analysieren und zu nutzen. Es umfasst verschiedene Technologien und Tools wie Datenbanken, Data Mining, maschinelles Lernen und künstliche Intelligenz, die verwendet werden, um Erkenntnisse aus den Daten zu gewinnen. Daher kann man sagen, dass Big Data eher eine Strategie oder ein Framework ist, das auf verschiedenen Technologien basiert, anstatt eine eigenständige Technologie zu sein. Letztendlich zielt Big Data darauf ab, Unternehmen dabei zu unterstützen, fundierte Entscheidungen auf der Grundlage von Daten zu treffen und Wettbewerbsvorteile zu erlangen.
-
Wie kann ich Data benutzen, wenn mein Speicher komplett voll ist, aber Data leer ist?
Wenn dein Speicher voll ist, kannst du versuchen, Platz zu schaffen, indem du unnötige Dateien oder Apps löschst. Wenn der Speicherplatz immer noch nicht ausreicht, könntest du auch versuchen, Daten auf eine externe Festplatte oder in die Cloud auszulagern, um Platz auf deinem Gerät zu schaffen. Wenn der Data-Speicher leer ist, bedeutet dies wahrscheinlich, dass du keine neuen Daten speichern kannst, bis du Speicherplatz freigibst oder ein Upgrade durchführst.
-
Was bietet bessere Chancen auf dem Arbeitsmarkt: die Entwicklung einer Data Analytics App oder Web Development?
Es ist schwierig, eine eindeutige Antwort zu geben, da dies von verschiedenen Faktoren abhängt, wie zum Beispiel dem aktuellen Bedarf auf dem Arbeitsmarkt, den individuellen Fähigkeiten und Erfahrungen des Einzelnen sowie den spezifischen Anforderungen der jeweiligen Branche. Data Analytics ist ein wachsender Bereich, da Unternehmen verstärkt datengetriebene Entscheidungen treffen möchten. Auf der anderen Seite ist Webentwicklung nach wie vor sehr gefragt, da Unternehmen eine starke Online-Präsenz benötigen. Es kann daher sinnvoll sein, die Nachfrage in Ihrer Region und Ihre persönlichen Interessen und Fähigkeiten zu berücksichtigen, um die besten Chancen auf dem Arbeitsmarkt zu ermitteln.
-
Warum Data Scientist?
Warum Data Scientist? Data Scientist sind gefragt, weil sie komplexe Daten analysieren und interpretieren können, um fundierte Entscheidungen zu treffen. Sie spielen eine entscheidende Rolle bei der Optimierung von Geschäftsprozessen und der Entwicklung innovativer Produkte. Zudem bieten Data Science Karrieremöglichkeiten in verschiedenen Branchen und ermöglichen es, mit modernsten Technologien und Tools zu arbeiten. Nicht zuletzt ist Data Science ein spannendes und dynamisches Feld, das ständig neue Herausforderungen und Möglichkeiten bietet.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.